On null 3-hypergraphs
نویسندگان
چکیده
Given a 3-uniform hypergraph H consisting of set V vertices, and T?V3 triples, null labelling is an assignment ±1 to the triples such that each vertex contained in equal number labelled +1 ?1. Thus, signed degree zero. A necessary condition for every even. The Null Labelling Problem determine whether has labelling. It proved this problem NP-complete. Computer enumerations suggest most hypergraphs which satisfy do have Some constructions are given produce satisfying condition, but not self complementary 3-hypergraph with property also constructed.
منابع مشابه
On 3-uniform hypergraphs without linear cycles∗
We explore properties of 3-uniform hypergraphs H without linear cycles. It is surprising that even the simplest facts about ensuring cycles in graphs can be fairly complicated to prove for hypergraphs. Our main results are that 3-uniform hypergraphs without linear cycles must contain a vertex of strong degree at most two and must have independent sets of size at least 2|V (H)| 5 .
متن کاملMixed Covering Arrays on 3-Uniform Hypergraphs
Covering arrays are combinatorial objects that have been successfully applied in the design of test suites for testing systems such as software, circuits and networks, where failures can be caused by the interaction between their parameters. In this paper, we perform a new generalization of covering arrays called covering arrays on 3-uniform hypergraphs. Let n, k be positive integers with k ≥ 3...
متن کاملFriendship 3-hypergraphs
A friendship 3-hypergraph is a 3-hypergraph in which any 3 vertices, u, v and w, occur in pairs with a unique fourth vertex x; i.e., uvx, uwx, vwx are 3-hyperedges. S os found friendship 3-hypergraphs coming from Steiner Triple Systems. Hartke and Vandenbussche showed that any friendship 3-hypergraph can be decomposed into sets of K 4 's. We think of this as a set of 4-tuples and call it a frie...
متن کاملPartitioning 3-uniform hypergraphs
Bollobás and Thomason conjectured that the vertices of any r-uniform hypergraph with m edges can be partitioned into r sets so that each set meets at least rm/(2r − 1) edges. For r = 3, Bollobás, Reed and Thomason proved the lower bound (1− 1/e)m/3 ≈ 0.21m, which was improved to 5m/9 by Bollobás and Scott (while the conjectured bound is 3m/5). In this paper, we show that this Bollobás-Thomason ...
متن کاملMatchings in 3-uniform hypergraphs
We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph. More precisely, suppose thatH is a sufficiently large 3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex degree of H is greater than ( n−1 2 )
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2021
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2020.10.020